¿Sabías que el álgebra que se estudia en secundaria es muy antigua?
Aquí encontrarás algunos pasajes de su historia.
Desde el siglo XVII aC. los matemáticos de Mesopotamia y de Babilonia ya sabían resolver ecuaciones de primero y segundo grado. Además resolvían también, algunos sistemas de ecuaciones con dos ecuaciones y dos incógnitas
En el siglo XVI aC. los egipcios desarrollaron un álgebra muy elemental que usaron para resolver problemas cotidianos que tenían que ver con la repartición de víveres, de cosechas y de materiales. Ya para entonces tenían un método para resolver ecuaciones de primer grado que se llamaba el "método de la falsa posición". No tenían notación simbólica pero utilizaron el jeroglífico hau (que quiere decir montón o pila) para designar la incógnita.
Alrededor del siglo I dC. los matemáticos chinos escribieron el libro Jiu zhang suan shu ( que significaEl Arte del cálculo), en el que plantearon diversos métodos para resolver ecuaciones de primero y segundo grado, así como sistemas de dos ecuaciones con dos incógnitas. Con su ábaco (suan zí) tenían la posibilidad de representar números positivos y negativos.
En el siglo II, el matemático griego Nicómaco de Gerasa publicó su Introducción a la Aritmética y en ella expuso varias reglas para el buen uso de los números.
En el siglo III el matemático griego Diofanto de Alejandría publicó su Aritmética en la cual, por primera vez en la historia de las matemáticas griegas, se trataron de una forma rigurosa no sólo las ecuaciones de primer grado, sino también las de segundo. Introdujo un simbolismo algebraico muy elemental al designar la incógnita con un signo que es la primera sílaba de la palabra griega arithmos, que significa número. Los problemas de álgebra que propuso prepararon el terreno de lo que siglos más tarde sería "la teoría de ecuaciones". A pesar de lo rudimentario de su notación simbólica y de lo poco elegantes que eran los métodos que usaba, se le puede considerar como uno de los precursores del álgebra moderna.
En el siglo VII los hindúes habían desarrollado ya las reglas algebraicas fundamentales para manejar números positivos y negativos.
Siglo IX. Época en la que trabajó el matemático y astrónomo musulmán Al-Jwarizmi, cuyas obras fueron fundamentales para el conocimiento y el desarrollo del álgebra. Al - Jwarizmi investigó y escribió acerca de los números, de los métodos de cálculo y de los procedimientos algebraicos para resolver ecuaciones y sistemas de ecuaciones. Su nombre latinizado dio origen a la palabra algoritmo que, usada primero para referirse a los métodos de cálculos numéricos en oposición a los métodos de cálculo con ábaco, adquirió finalmente su sentido actual de "procedimiento sistemático de cálculo". En cuanto a la palabra álgebra, deriva del título de su obra más importante, que presenta las reglas fundamentales del álgebra, Al-jabr wal muqabala.
En el siglo X vivió el gran algebrista musulmán Abu Kamil, quien continuó los trabajos de Al-Jwarizmi y cuyos avances en el álgebra serían aprovechados en el siglo XIII por el matemático italiano Fibonacci.
Durante este mismo siglo, el matemático musulmán Abul Wafa al Bujzani, hizo comentarios sobre los trabajos de Diofanto y Al-Jwarizmi y gracias a ellos, los europeos conocieron la Arithmetica de Diofanto.
1202. Después de viajar al norte de África y a Oriente, donde aprendió el manejo del sistema de numeración indoarábigo, Leonardo de Pisa, mejor conocido como Fibonacci, publicó el Liber Abaci (Tratado del Ábaco) obra que en los siguientes tres siglos fue la fuente principal para todos aquellos estudiosos de la aritmética y el álgebra.
En el siglo XV, el matemático francés Nicolás Chuquet introdujo en Europa occidental el uso de los números negativos, introdujo además una notación exponencial muy parecida a la que usamos hoy en día, en la cual se utilizan indistintamente exponentes positivos o negativos.
En 1489 el matemático alemán Johann Widmann d´Eger inventó los símbolos "+" y "-" para sustituir las letras "p" y "m" que a su vez eran las iniciales de las palabras piu (más) y minus (menos) que se utilizaban para expresar la suma y la resta.
En 1525, el matemático alemán Christoph Rudolff introdujo el símbolo de la raíz cuadrada que usamos hoy en día:
Este símbolo era una forma estilizada de la letra "r" de radical o raíz.
Entre 1545 y 1560, los matemáticos italianos Girolamo Cardano y Rafael Bombelli se dieron cuenta de que el uso de los números imaginarios era indispensable para poder resolver todas las ecuaciones de segundo, tercero y cuarto grado.
En 1557 el matemático inglés Robert Recorde inventó el símbolo de la igualdad, =.
En 1591 el matemático francés François Viète desarrolló una notación algebraica muy cómoda, representaba las incógnitas con vocales y las constantes con consonantes.
En 1637 el matemático francés René Descartes fusionó la geometría y el álgebra inventando la "geometría analítica". Inventó la notación algebraica moderna, en la cual las constantes están representadas por las primeras letras del alfabeto, a, b, c, … y las variables o incógnitas por las últimas, x, y, z. Introdujo también la notación exponencial que usamos hoy en día.
Aquí encontrarás algunos pasajes de su historia.
Desde el siglo XVII aC. los matemáticos de Mesopotamia y de Babilonia ya sabían resolver ecuaciones de primero y segundo grado. Además resolvían también, algunos sistemas de ecuaciones con dos ecuaciones y dos incógnitas
En el siglo XVI aC. los egipcios desarrollaron un álgebra muy elemental que usaron para resolver problemas cotidianos que tenían que ver con la repartición de víveres, de cosechas y de materiales. Ya para entonces tenían un método para resolver ecuaciones de primer grado que se llamaba el "método de la falsa posición". No tenían notación simbólica pero utilizaron el jeroglífico hau (que quiere decir montón o pila) para designar la incógnita.
Alrededor del siglo I dC. los matemáticos chinos escribieron el libro Jiu zhang suan shu ( que significaEl Arte del cálculo), en el que plantearon diversos métodos para resolver ecuaciones de primero y segundo grado, así como sistemas de dos ecuaciones con dos incógnitas. Con su ábaco (suan zí) tenían la posibilidad de representar números positivos y negativos.
En el siglo II, el matemático griego Nicómaco de Gerasa publicó su Introducción a la Aritmética y en ella expuso varias reglas para el buen uso de los números.
En el siglo III el matemático griego Diofanto de Alejandría publicó su Aritmética en la cual, por primera vez en la historia de las matemáticas griegas, se trataron de una forma rigurosa no sólo las ecuaciones de primer grado, sino también las de segundo. Introdujo un simbolismo algebraico muy elemental al designar la incógnita con un signo que es la primera sílaba de la palabra griega arithmos, que significa número. Los problemas de álgebra que propuso prepararon el terreno de lo que siglos más tarde sería "la teoría de ecuaciones". A pesar de lo rudimentario de su notación simbólica y de lo poco elegantes que eran los métodos que usaba, se le puede considerar como uno de los precursores del álgebra moderna.
En el siglo VII los hindúes habían desarrollado ya las reglas algebraicas fundamentales para manejar números positivos y negativos.
Siglo IX. Época en la que trabajó el matemático y astrónomo musulmán Al-Jwarizmi, cuyas obras fueron fundamentales para el conocimiento y el desarrollo del álgebra. Al - Jwarizmi investigó y escribió acerca de los números, de los métodos de cálculo y de los procedimientos algebraicos para resolver ecuaciones y sistemas de ecuaciones. Su nombre latinizado dio origen a la palabra algoritmo que, usada primero para referirse a los métodos de cálculos numéricos en oposición a los métodos de cálculo con ábaco, adquirió finalmente su sentido actual de "procedimiento sistemático de cálculo". En cuanto a la palabra álgebra, deriva del título de su obra más importante, que presenta las reglas fundamentales del álgebra, Al-jabr wal muqabala.
En el siglo X vivió el gran algebrista musulmán Abu Kamil, quien continuó los trabajos de Al-Jwarizmi y cuyos avances en el álgebra serían aprovechados en el siglo XIII por el matemático italiano Fibonacci.
Durante este mismo siglo, el matemático musulmán Abul Wafa al Bujzani, hizo comentarios sobre los trabajos de Diofanto y Al-Jwarizmi y gracias a ellos, los europeos conocieron la Arithmetica de Diofanto.
1202. Después de viajar al norte de África y a Oriente, donde aprendió el manejo del sistema de numeración indoarábigo, Leonardo de Pisa, mejor conocido como Fibonacci, publicó el Liber Abaci (Tratado del Ábaco) obra que en los siguientes tres siglos fue la fuente principal para todos aquellos estudiosos de la aritmética y el álgebra.
En el siglo XV, el matemático francés Nicolás Chuquet introdujo en Europa occidental el uso de los números negativos, introdujo además una notación exponencial muy parecida a la que usamos hoy en día, en la cual se utilizan indistintamente exponentes positivos o negativos.
En 1489 el matemático alemán Johann Widmann d´Eger inventó los símbolos "+" y "-" para sustituir las letras "p" y "m" que a su vez eran las iniciales de las palabras piu (más) y minus (menos) que se utilizaban para expresar la suma y la resta.
En 1525, el matemático alemán Christoph Rudolff introdujo el símbolo de la raíz cuadrada que usamos hoy en día:
Este símbolo era una forma estilizada de la letra "r" de radical o raíz.
Entre 1545 y 1560, los matemáticos italianos Girolamo Cardano y Rafael Bombelli se dieron cuenta de que el uso de los números imaginarios era indispensable para poder resolver todas las ecuaciones de segundo, tercero y cuarto grado.
En 1557 el matemático inglés Robert Recorde inventó el símbolo de la igualdad, =.
En 1591 el matemático francés François Viète desarrolló una notación algebraica muy cómoda, representaba las incógnitas con vocales y las constantes con consonantes.
En 1637 el matemático francés René Descartes fusionó la geometría y el álgebra inventando la "geometría analítica". Inventó la notación algebraica moderna, en la cual las constantes están representadas por las primeras letras del alfabeto, a, b, c, … y las variables o incógnitas por las últimas, x, y, z. Introdujo también la notación exponencial que usamos hoy en día.
lo unico k entiendo mas o menos el lo de los numeros egipcios XP
ResponderEliminarmaria 1ªD